首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53932篇
  免费   7854篇
  国内免费   2473篇
电工技术   1268篇
技术理论   8篇
综合类   2850篇
化学工业   22254篇
金属工艺   4721篇
机械仪表   1384篇
建筑科学   2449篇
矿业工程   902篇
能源动力   2505篇
轻工业   2291篇
水利工程   295篇
石油天然气   2165篇
武器工业   259篇
无线电   2143篇
一般工业技术   14840篇
冶金工业   2934篇
原子能技术   385篇
自动化技术   606篇
  2024年   179篇
  2023年   1278篇
  2022年   1687篇
  2021年   2164篇
  2020年   2136篇
  2019年   2102篇
  2018年   2010篇
  2017年   2247篇
  2016年   2520篇
  2015年   2685篇
  2014年   3251篇
  2013年   3495篇
  2012年   3822篇
  2011年   4097篇
  2010年   3155篇
  2009年   3190篇
  2008年   2486篇
  2007年   3113篇
  2006年   3036篇
  2005年   2529篇
  2004年   2227篇
  2003年   2024篇
  2002年   1624篇
  2001年   1224篇
  2000年   1137篇
  1999年   890篇
  1998年   796篇
  1997年   568篇
  1996年   459篇
  1995年   406篇
  1994年   352篇
  1993年   241篇
  1992年   215篇
  1991年   187篇
  1990年   196篇
  1989年   127篇
  1988年   56篇
  1987年   53篇
  1986年   37篇
  1985年   62篇
  1984年   51篇
  1983年   50篇
  1982年   28篇
  1981年   5篇
  1980年   13篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1959年   5篇
  1951年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Recently, quorum sensing (QS) inhibitors (QSIs) have been combined with antibiotics to enhance antibiofilm efficacy in vitro and in vivo. However, targeting QS signals alone is not enough to prevent bacterial infections. Drug resistance and recurrence of biofilms makes it difficult to eradicate. Herein, photodynamic therapy (PDT) is selected to unite QSIs and antibiotics. A synergistically antibiofilm system, which combines QSIs, antibiotics, and PDT based on hollow carbon nitride spheres (HCNSs) is envisaged. First, HCNS provides the multidrug delivering ability, enabling QSIs and antibiotics to be released in sequence. Subsequently, multistage releases sensitize bacteria effectively, potentiating the chemotherapeutic effects of the antibiotics. Finally, the integration of QSIs and PDT not only minimizes the possibility of drug resistance, but also overcomes the problem of limited mass and extension of PDT. Even after 48 h of incubation, the bacterial biofilm is obviously inhibited. And its biofilm disperse efficiency exceeds 48% (compared with QSI‐potentiated chemotherapy group) and 40% (compared with PDT group). Besides, the inhibition of the QS system influences phenotypes related to virulence factor production and surface hydrophobicity, which weaken biofilm invasion and formation. Eventually, this system is applied to disperse bacterial biofilm in vivo. Overall, PDT and QS modulation are devoted to eradicate drug resistance and recurrence of the biofilm.  相似文献   
52.
53.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   
54.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
55.
李志勤  李侨  黄伟  丁亮  邱泽刚 《化工进展》2020,39(3):1035-1042
采用酸处理方法对CoPd/TiO2催化剂进行改性,并将酸改性催化剂用于温和条件下CH4-CO2梯阶转化直接合成C2含氧化合物(乙酸和乙醇)的反应。在150~300℃考察了浸酸方式和不同种类酸处理对催化剂活性和选择性的影响。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、NH3程序升温脱附(NH3-TPD)和N2吸附对催化剂进行了表征。结果表明,酸改性明显提高了CoPd/TiO2上C2含氧化合物的生成速率和选择性。浸酸方式对催化剂性能和结构有显著影响,先用酸浸渍载体然后再浸渍活性金属所得催化剂具有更高的活性。在H3PO4、HNO3和HCl中,H3PO4浸渍的催化剂活性最佳,在150℃时C2含氧化合物(乙酸和乙醇)的生成速率为3365 μg/(g·h),选择性达到91%。  相似文献   
56.
Recently, ceramic matrix composites reinforced by short carbon fibers (CFs) attracted increasing attentions. To further improve mechanical properties and oxidation resistances, CFs were subjected to oxidation and acidification followed by sol-gel dip-coating to deposit ZrO2 on their surfaces. ZrO2-Cf/SiC composites were fabricated by joint hot compression molding and sintering, compared to Cf/SiC and SiC prepared by the same method. Microstructural analyses indicated that ZrO2 coatings were successfully deposited on CF surfaces, formed strong bonding and interfaces between CF and the matrix. Meanwhile, CFs were found uniformly distributed in SiC matrix with random orientations. Flexural curves of ZrO2-Cf/SiC and Cf/SiC revealed the presence of “false plasticity” regions after sharp drops, which were quite different from brittle flexural behavior of SiC ceramic. Compression strength of the three samples showed step-up growth. ZrO2-Cf/SiC exhibited the highest value, indicating the introduction of CFs and ZrO2 coatings do have great influence on mechanical performances. After heat treatment, ZrO2-Cf/SiC exhibited better oxidation resistance than Cf/SiC, with weight loss ratios estimated to ??3.76% and ??6.43%, respectively. These improved properties indicated that ZrO2-Cf/SiC would be excellent alternatives to other existence materials under ultra-high temperature environments.  相似文献   
57.
The synergistic effects of activated carbon (AC) and molybdenum oxide (MoO3) in improving the flame retardancy of poly(vinyl chloride) (PVC) were investigated. The effects of AC, MoO3 and their mixture with a mass ratio of 1:1 on the flame retardancy and smoke suppression properties of PVC were studied using the limiting oxygen index and cone calorimeter tests. It was found that the flame retardancy of the relatively cheaper AC was slightly weaker than that of MoO3. In addition, the incorporation of AC and MoO3 greatly reduced the total heat release and improved smoke suppressant property of PVC composites. When the total content of AC and MoO3 was 10 phr, PVC/AC/MoO3 had the lowest peak heat release rate and peak smoke production rate values of 173.80 kW m?2 and 0.1472 m2 s?1, which represented reductions of 47.3 and 59.9%, respectively, compared with those of PVC. Furthermore, thermogravimetric analysis and gel content tests were used to analyze the flame retardant mechanism of AC and MoO3, with results showing that AC could promote early crosslinking in PVC. Char residue left after heating at 500 °C was analyzed using scanning electron microscopy and Raman spectroscopy, and the results showed that MoO3 produced the most compact char, with the smallest and most organized carbonaceous microstructures. © 2017 Society of Chemical Industry  相似文献   
58.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   
59.
One of the biggest challenges of the materials science is the mutual exclusion of strength and toughness. This issue was minimized by mimicking the natural structural materials. To date, few efforts were done regarding materials that should be used in harsh environments. In this work we present novel continuous carbon fiber reinforced ultra-high-temperature ceramic matrix composites (UHTCMCs) for aerospace featuring optimized fiber/matrix interfaces and fibers distribution. The microstructures – produced by electrophoretic deposition of ZrB2 on unidirectional carbon fibers followed by ZrB2 infiltration and hot pressing – show a maximum flexural strength and fracture toughness of 330 MPa and 14 MPa m1/2, respectively. Fracture surfaces are investigated to understand the mechanisms that affect strength and toughness. The EPD technique allows the achievement of a peculiar salami-inspired architecture alternating strong and weak interfaces.  相似文献   
60.
Y2Hf2O7 possesses low thermal conductivity and high melting point, which make it promising for a new anti-ablation material. For evaluating the thermal stability and the potential applications of Y2Hf2O7 on anti-ablation protection of C/C composites, Y2Hf2O7 ceramic powder was synthesized by solution combustion method and Y2Hf2O7 coating was prepared on the surface of SiC coated C/C composites using SAPS. Results shown that the coating exhibits good ablation resistance under the heat flux of 2.4?MW/m2 with the linear and mass ablation rates are 0.16?μm?s?1 and ?0.028?mg?s?1, respectively, after ablation for 40?s. With the prolonging of the ablation time, the increasing thermal stress causes the increase of cracks. Moreover, the chemical erosion from SiO2 and the physical volatilization of low temperature molten products aggravate failure of the Y2Hf2O7 coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号